0
返回首页
1. 如图,△ABC内接于⊙O,⊙O的直径AD与弦BC相交于点E,BE=EC,过点D的切线交AC的延长线于点F.
(1)
求证:BC∥DF;
(2)
若sin∠BAD=
, AB=
, 求AF的长.
【考点】
等腰三角形的性质; 垂径定理; 圆周角定理; 切线的性质; 解直角三角形—三边关系(勾股定理);
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
换一批
1. 如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD
(1)
求证:BD平分∠ABC;
(2)
当∠ODB=30°时,求证:BC=OD.
综合题
普通
2. 如图,AB是⊙O的直径,BC是⊙O的弦,OD⊥CB于点E,交BC于点E.
(1)
请写出三个不同类型的正确结论;
(2)
连接CD,∠ABC=20°,求∠CDE的度数.
综合题
普通
3. 如图,在锐角△ABC中,AB>AC,AD⊥BC于点D,以AD为直径的⊙O分别交AB,AC于点E,F,连接DE,DF.
(1)
求证:∠EAF+∠EDF=180°.
(2)
已知P是射线DC上一个动点,当点P运动到PD=BD时,连接AP,交⊙O于点G,连接DG.设∠EDG=∠α,∠APB=∠β,那么∠α与∠β有何数量关系?试证明你的结论(在探究∠α与∠β的数量关系时,必要时可直接运用(1)的结论进行推理与解答).
综合题
困难