3.
综合与实践
【问题】在圆柱表面,蚂蚁怎么爬行路径最短?(计算过程中的取3)
素材1 如图1,圆柱形纸盒的高为12厘米,底面直径为6厘米,在圆柱下底圆周上的A点有一只蚂蚁,它想吃到上底面圆周上与A点对应的B点处的食物.
(1)若蚂蚁沿图1中的折线A→C→B爬行的最短路径记为“路线一”,此时最短路程是厘米.将圆柱沿着将侧面展开得到图2,请在图2中画出蚂蚁爬行的最短路径(此路径记为“路线二”),此时最短路程是_______厘米;比较可知:蚂蚁爬行的最短路径是路线______(用“一”或“二”填空)
素材2 如图3所示的实践活动器材包括:底面直径为6厘米,高为10厘米的木质圆柱、橡皮筋、细线(借助细线来反映爬行的路线)、直尺,通过调节橡皮筋的位置达到改变圆柱的高度的目的,(1)中两种路线路程的长度如下表所示(单位:厘米):
圆柱高度 | 沿路线一路程x | 沿路线二路程y | 比较x与y的大小 |
5 | 11 | 10.3 | |
4 | 10 | 9.85 | |
3 | a | 9.49 | b |
(2)填空:表格中a的值是________;表格中b表示的大小关系是_________;
(3)经历上述探究后,请你思考:若圆柱的半径为r,圆柱的高为h.在r不变的情况下,当圆柱半径为r与圆柱的高度h存在怎样的数量关系时,蚂蚁在圆柱表面的两种爬行路线的路程相等?