0
返回首页
1. 如图所示,足够长的传送带与水平方向的夹角
=30°,并以v
0
=2.0m/s的速度逆时针转动。A、B两物体质量均为m=1.0kg,其中A物体和传送带间的摩擦可忽略,B物体与传送带间的摩擦因数为μ=
, A、B之间用长为L=0.4m的不可伸长的轻绳连接。在外力作用下,A、B和传送带相对静止且绳处于伸直状态,t=0时撤去外力作用。A、B之间的碰撞为弹性碰撞,g取10m/s
2
。求:
(1)
第一次碰撞前A、B各自的加速度大小;
(2)
绳子是否会再次伸直?如果会,求出此时的时刻t
1
;如果不会,求出第一次碰后A、B之间的最大距离;
(3)
从t=0到t=2s的过程中物体B与传送带间由于摩擦产生的热量Q。
【考点】
动量守恒定律; 能量守恒定律; 牛顿运动定律的综合应用; 机械能守恒定律;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
困难
能力提升
换一批
1. 如图所示,在光滑水平地面相距足够远的地方固定两个竖直的弹性挡板,质量为m的滑块在质量为M的木板最左端一起以速度v
0
向右匀速运动,木块和木板间的动摩擦因数为
, 已知
, 所有碰撞都是弹性碰撞,求:
(1)
木板与挡板发生第n次碰撞后到与挡板发生第
次碰撞前,木块和木板达到的共同速度是多少?
(2)
要使滑块m不从木板上掉下来,木板至少多长?
(3)
经过足够长的时间,木块离木板左端的距离是多少?
综合题
普通
2. 如图所示,一平板车上竖直固定一个半径R=0.3m的光滑
圆弧轨道,轨道与平板水平相切于B点,圆弧轨道与车的总质量M=6kg,若将平板车放在光滑的水平面上,初始时车静止,现有质量m=2kg的小滑块(可以看成质点)从轨道最高点A由静止开始向下滑,已知小滑块与平板车的平板部分的动摩擦因数
(取
),求:
(1)
满足小滑块恰好不从平板车上滑落的平板车水平部分长度;
(2)
若平板车水平部分长度BC=0.5m,小滑块离开平板车时相对地面的速度。
综合题
普通
3. 如图所示,在光滑的水平地面上,质量为
的小球A以
的初速度向右做匀速直线运动,在O点处与质量为
的静止小球B发生碰撞,碰后小球A的速度大小为
, 方向向右。小球B与墙壁后等速率弹回,在P点与小球A发生第二次碰撞,碰后小球A的速度大小为
, 方向依旧向右。求:
(1)
第一次碰撞后小球B的速度大小
;
(2)
第一次碰撞过程中系统损失的机械能E
损
;
(3)
第二次碰撞后小球B的速度大小
。
综合题
普通