0
返回首页
1. 如图,四边形 ABCD 为平行四边形, ∠BAD 的平分线 AE 交 CD 于点 F ,交 BC 的延长线于点 E .
(1)
求证: BE = CD ;
(2)
连接BF,若BF⊥AE , ∠BEA =60°, AB =2,求平行四边形 ABCD 的面积.
【考点】
角平分线的性质; 等腰三角形的判定与性质; 勾股定理的应用; 平行四边形的性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
换一批
1. 我国古代数学著作《增删算法统宗》中,有诗如下:今有门厅一座,不知门广高低.长竿横进使归室,争奈门狭四尺.随即整竿过去,亦长二尺无疑.两隅斜去恰方齐,请问门高几何?意思是:今有一房门,不知宽与高,长竿横起进门入室,门的宽度比长竿小4尺(即
CE
=4尺);将长竿直立过门,门的高度比长竿小2尺(即
AF
=2尺).将长竿斜放穿过门的对角,恰好进门.试问门高是多少尺?(要求:列方程解决问题)
解答题
普通
2. 图1是放置在水平面上的可折叠式护眼灯,其中底座的高
AB
=5 cm,连杆
BC
=30 cm,灯罩
CD
=20 cm
.
如图2,转动
BC
、
CD
, 使得∠
BCD
成平角,且灯罩端点
D
离桌面
l
的高度
DH
为45 cm,求
A
、
H
的距离
.
解答题
普通
3. 如图,小慧和她的同学荡秋千,秋千
在静止位置时,下端
离地面
, 荡秋千到
的位置时,下端
距静止位置的水平距离
等于
, 距地面
, 求秋千
的长.
解答题
普通