0
返回首页
1. 如图,菱形
的边长为2,
, 点
是边
上任意一点(端点除外),线段
的垂直平分线交
,
分别于点
,
,
,
的中点分别为
,
.
(1)
求证:
(2)
求证:
的最小值
(3)
当点
在
上运动时,
的大小是否变化?为什么?
【考点】
线段垂直平分线的性质; 等边三角形的判定与性质; 菱形的性质; 线段垂直平分线的判定; 三角形的中位线定理;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
困难
能力提升
换一批
1. 如图,已知菱形
的边长为
,
, 点
、
分别是边
、
上的两个动点,
, 连接
.
(1)
是等边三角形吗?如是,请证明;如不是,请说明理由.
(2)
在
、
运动的过程中,
的面积存在最大值吗?如存在,请求出该最大值;如不存在,请说明理由.
综合题
普通
2. 定义:若四边形中某个顶点与其他三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.
(1)
判断:如图①,一个内角为60°的菱形_▲_等距四边形.(填“是”或“不是”)并说明为什么?
(2)
如图②,在5×5的网格图(每个小正方形的边长为1)中有
A
、
B
两点,请在给出的两个网格图上各找出
C
、
D
两个格点,使得以
A
、
B
、
C
、
D
为顶点的四边形是以点
A
为等距点的“等距四边形”,画出相应的“等距四边形”(互不全等),并求出该等距四边形的端点均为非等距点的对角线长.
综合题
普通
3. 如图,菱形花坛
的一边长
为
,
,沿着该菱形的对角线修建两条小路
和
.
(1)
求
和
的长;
(2)
求菱形花坛
的面积.
综合题
普通