1. 一次足球训练中,小明从球门正前方8m的处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以为原点建立如图所示直角坐标系.

(1) 求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素)。
(2) 对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点正上方2.25m处?
【考点】
二次函数的实际应用-抛球问题;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 普通
能力提升
真题演练
换一批
2. 乒乓球被誉为中国国球.2023年的世界乒乓球标赛中,中国队包揽了五个项目的冠军,成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图,一位运动员从球台边缘正上方以击球高度的高度,将乒乓球向正前方击打到对面球台,乒乓球的运行路线近似是抛物线的一部分.

乒乓球到球台的竖直高度记为(单位:),乒乓球运行的水平距离记为(单位:).测得如下数据:

                                                                                                                                                      

水平距离x/

         

         

         

         

         

         

         

竖直高度y/

         

         

         

         

         

         

         

(1) 在平面直角坐标系中,描出表格中各组数值所对应的点 , 并画出表示乒乓球运行轨迹形状的大致图象;

(2) ①当乒乓球到达最高点时,与球台之间的距离是           , 当乒乓球落在对面球台上时,到起始点的水平距离是           

②求满足条件的抛物线解析式;

(3) 技术分析:如果只上下调整击球高度 , 乒乓球的运行轨迹形状不变,那么为了确保乒乓球既能过网,又能落在对面球台上,需要计算出的取值范围,以利于有针对性的训练.如图②.乒乓球台长为274 , 球网高为15.25 . 现在已经计算出乒乓球恰好过网的击球离度的值约为1.27 . 请你计算出乒乓球恰好落在对面球台边缘点B处时,击球高度的值(乒乓球大小忽略不计).
综合题 普通