1.     
(1) 【问题情境 建构函数】

如图1,在矩形中,的中点, , 垂足为.设 , 试用含的代数式表示.

(2) 【由数想形 新知初探】

在上述表达式中,成函数关系,其图像如图2所示.若取任意实数,此时的函数图象是否具有对称性?若有,请说明理由,并在图2上补全函数图象.

(3) 【数形结合 深度探究】

在“取任意实数”的条件下,对上述函数继续探究,得出以下结论:①函数值的增大而增大;②函数值的取值范围是;③存在一条直线与该函数图象有四个交点;④在图像上存在四点 , 使得四边形是平行四边形.其中正确的是.(写出所有正确结论的序号)

(4) 【抽象回归 扩展总结】

若将(1)中的“AB=4”改成“”,此时关于的函数表达式是              .一般地,当取任意实数时,类比一次函数、反比例函数、二次函数的研究过程,探究此类函数的相关性质(直接写出3条即可).

【考点】
矩形的性质; 相似三角形的判定与性质;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难
能力提升
真题演练
换一批