0
返回首页
1. 已知正三棱锥的侧棱长为2,底面边长为1,且正三棱锥内有一个球与其四个面相切,求三棱锥体积与内切球的表面积.
【考点】
棱柱、棱锥、棱台的体积; 球的表面积与体积公式及应用; 球内接多面体;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
变式训练
拓展培优
真题演练
换一批
1. 已知正四面体
的内切球的表面积为
.
(1)
求该内切球的半径;
(2)
过该四面体的一条棱以及球心的平面截正四面体
, 求所得截面的面积.
解答题
普通
2. 如图,在三棱推
中,高
(
底面
),
.
(1)
求三棱锥
的体积;
(2)
求三棱锥
外接球的表面积.
解答题
普通
3. 台州黄岩被誉为“模具之乡”,为市场对球形冰淇淋的需求,特地制作了一款中空的正三棱柱模具,其内壁恰好是球体的表面,且内壁与棱柱的每一个面都相切
内壁厚度忽略不计
, 店家可以将不同口味的冰淇淋放入该模具中,再通过按压的方式得到球形冰淇淋
已知该模具底部边长为
.
⑴求内壁的面积;
⑵求制作该模具所需材料的体积;
⑶求模具顶点到内壁的最短距离.
解答题
普通
1. 已知球O的体积为
, 则球O的表面积为
,球O的内接正四面体的体积为
.
填空题
容易
2. 在一个半径为2的半球形封闭容器内放入两个半径相同的小球,则这两个小球的表面积之和最大为
.
填空题
普通
3. 蹴鞠,又名“蹴球”“蹴圆”等,“蹴“有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的踢足球活动.已知某“鞠”的表面上有四个点P、A、B、C,其中
平面
,
, 则该球的体积为( )
A.
B.
C.
D.
单选题
普通
1. 如图,在三棱推
中,高
(
底面
),
.
(1)
求三棱锥
的体积;
(2)
求三棱锥
外接球的表面积.
解答题
普通
2.
(1)
已知三棱锥
的所有顶点都在球
的球面上,
是边长为1的正三角形,
为球
的直径,且
, 求此棱锥的体积.
(2)
已知
,
是球
的球面上两点,
,
为该球面上的动点
若三棱锥
体积的最大值为36,求球
的表面积.
解答题
普通
1. 已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为
.
填空题
普通