0
返回首页
1. 如图是两个圆形转盘,第一个转盘被平均分成“1”“2”两个区域,第二个转盘被平均分成“1”“2”“3”“4”四个区域.
(1)
旋转第一个转盘一次,指针落在“2”区域的概率是
;
(2)
同时旋转两个转盘,用画树状图或列表的方法求两个转盘的指针都不落在“1”区域的概率.
【考点】
几何概率; 用列表法或树状图法求概率;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. 某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是两种瓶装饮料,它们分别是:绿茶和红茶,抽奖规则如下:如图,①是一个材质均匀可自由转动的转盘,转盘被等分成三个扇形区域,每个区域上分别写有“绿”、“红”、“茶”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品. 根据以上规则,回答下列问题:
(1)
一次“有效随机转动”可获得“茶”字的概率为
;
(2)
有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶绿茶的概率.
综合题
普通
2. 不透明的袋子中装有2个红球、1个白球,这些球除颜色外均相同.
(1)
从袋子中随机摸出1个球,放回并摇匀,再随机摸出1个球.请用画树状图(或列表)的方法,求两次摸出的球都是红球的概率.
(2)
从袋子中随机摸出1个球,如果是红球,不放回再随机摸出1个球如果是白球,放回并摇匀,再随机摸出1个球.两次摸出的球都是红球的概率是__________.
综合题
普通
3. 甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)
综合题
普通
1. 我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和如图1,
是该三角形的顺序旋转和,
是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数k,此三角形的顺序旋转和与逆序旋转和的差都小于4的概率是
.
填空题
普通
2. 将图中的
型(正方形)、
型(菱形)、
型(等腰直角三角形)纸片分别放在
个盒子中,盒子的形状、大小、质地都相同,再将这
个盒子装入一只不透明的袋子中.
(1)
搅匀后从中摸出
个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是
;
(2)
搅匀后先从中摸出
个盒子(不放回),再从余下的
个盒子中摸出
个盒子,把摸出的
个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率.(不重叠无缝隙拼接)
综合题
普通
3. 如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同
(1)
一只自由飞翔的小鸟,将随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率;
(2)
现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少 (用树状图或列表法求解)?
综合题
普通