0
返回首页
1. 如图,抛物线
与直线
交于点A(2,0)和点
.
(1)
求
和
的值;
(2)
求点
的坐标,并结合图象写出不等式
的解集;
(3)
点
是直线
上的一个动点,将点
向左平移
个单位长度得到点
,若线段
与抛物线只有一个公共点,直接写出点
的横坐标
的取值范围.
【考点】
平移的性质; 二次函数与一次函数的综合应用; 二次函数图象上点的坐标特征;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. 如图①,已知抛物线
y
1
=
x
2
+
bx
+
c
与
x
轴交于两点
O
(0,0)、
A
(2,0),将抛物线
y
1
向右平移两个单位长度,得到抛物线
y
2
. 点
P
是抛物线
y
1
在第四象限内一点,连接
PA
并延长,交抛物线
y
2
于点
Q
.
(1)
求抛物线
y
2
的表达式;
(2)
设点
P
的横坐标为
x
P
, 点
Q
的横坐标为
x
Q
, 求
x
Q
﹣
x
P
的值;
(3)
如图②,若抛物线
y
3
=
x
2
﹣8
x
+
t
与抛物线
y
1
=
x
2
+
bx
+
c
交于点
C
, 过点
C
作直线
MN
, 分别交抛物线
y
1
和
y
3
于点
M
、
N
(
M
、
N
均不与点
C
重合),设点
M
的横坐标为
m
, 点
N
的横坐标为
n
, 试判断|
m
﹣
n
|是否为定值.若是,直接写出这个定值;若不是,请说明理由.
综合题
困难
2. 如图1,在平面直角坐标系
中,已知抛物线
与
x
轴交于点
,
, 与
y
轴交于点
C
, 顶点为
D
, 连接
.
(1)
求抛物线的解析式;
(2)
在图1中,连接
并延长交
的延长线于点
E
, 求
的度数;
(3)
如图2,若动直线
l
与抛物线交于
M
,
N
两点(直线
l
与
不重合),连接
,
, 直线
与
交于点
P.
当
时,点
P
的横坐标是否为定值?请说明理由.
综合题
困难
3. 如图,二次函数
的图象与
轴交于
A
,
B
两点(点
A
在点
B
的左侧),与
轴正半轴交于点
, 且
.
(1)
求二次函数及直线
AC
的解析式.
(2)
P
是抛物线上一点,且在
轴上方,若
, 求点
的坐标.
综合题
普通
1.
小明合作学习小组在探究旋转、平移变换.如图△ABC,DEF均为等腰直角三角形,各顶点坐标分别为A(1,1),B(2,2),C(2,1),D(
,0),E(2
,0),F(
,﹣
).
(1)
他们将△ABC绕C点按顺时针方向旋转45°得到△A
1
B
1
C
1
. 请你写出点A
1
, B
1
的坐标,并判断A
1
C和DF的位置关系;
(2)
他们将△ABC绕原点按顺时针方向旋转45°,发现旋转后的三角形恰好有两个顶点落在抛物线y=2
x
2
+bx+c上,请你求出符合条件的抛物线解析式;
(3)
他们继续探究,发现将△ABC绕某个点旋转45°,若旋转后的三角形恰好有两个顶点落在抛物线y=x
2
上,则可求出旋转后三角形的直角顶点P的坐标,请你直接写出点P的所有坐标.
综合题
困难