0
返回首页
1. 抛物线y=x
2
﹣2ax﹣a﹣3与x轴交于点A,B,与y轴交于点C,点D(4,﹣a﹣3)在抛物线的图象上.
(1)
求抛物线的解析式;
(2)
现规定平面直角坐标系中横纵坐标相等的点为“不动点”.已知点N(x
N
, y
N
),Q(x
Q
, y
Q
)是抛物线y=x
2
﹣2ax﹣a﹣3图象上的“不动点”,点H是点N,Q之间抛物线上一点(不与点N,Q重合),求点H的纵坐标的取值范围.
【考点】
二次函数的最值;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
困难
能力提升
真题演练
换一批
1. 已知函数y=-x
2
+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).
(1)
求b,c的值.
(2)
当﹣4≤x≤0时,求y的最大值.
(3)
当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.
综合题
普通
2. 已知二次函数
,其中
.
(1)
当
时,求二次函数顶点坐标;
(2)
当
时,记二次函数的最小值为
,求证:
;
(3)
当
时,且
满足
时,函数有最大值为3,求
的值.
综合题
困难
3. 在平面直角坐标系中,记函数
的图象为
,正方形
的对称中心与原点重合,顶点
的坐标为(2,2),点
在第四象限.
(1)
当
=1时.
①求
的最低点的纵坐标;
(2)
当图象
与正方形
的边恰好有两个公共点时,直接写出
的取值范围.
综合题
普通
1. 当a≤x≤a+1时,函数y=x
2
-2x+1的最小值为1,则a的值为( )
A.
-1
B.
2
C.
0或2
D.
-1或2
单选题
普通
2. 如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=-x
2
+bx+c经过A,C两点,与x轴交于另一个点D.
(1)
①求点A,B,C的坐标;
②求b,c的值.
(2)
若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.
综合题
困难
3. 在平面直角坐标系中,抛物线
与
轴交于点
,
(点
在点
的左侧),与
轴交于点
, 且点
的坐标为
.
(1)
求点
的坐标;
(2)
如图1,若点
是第二象限内抛物线上一动点,求点
到直线
距离的最大值;
(3)
如图2,若点
是抛物线上一点,点
是抛物线对称轴上一点,是否存在点
使以
,
,
,
为顶点的四边形是平行四边形?若存在,请直接写出点
的坐标;若不存在,请说明理由.
综合题
困难