0
返回首页
1. 在平面直角坐标系中,抛物线
与
轴交于点
,
(点
在点
的左侧),与
轴交于点
, 且点
的坐标为
.
(1)
求点
的坐标;
(2)
如图1,若点
是第二象限内抛物线上一动点,求点
到直线
距离的最大值;
(3)
如图2,若点
是抛物线上一点,点
是抛物线对称轴上一点,是否存在点
使以
,
,
,
为顶点的四边形是平行四边形?若存在,请直接写出点
的坐标;若不存在,请说明理由.
【考点】
二次函数的最值; 平行四边形的性质; 等腰直角三角形; 二次函数与一次函数的综合应用;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
困难
能力提升
换一批
1. 已知函数
为常数)的图象经过点
.
(1)
求
满足的关系式;
(2)
设该函数图象的顶点坐标是
, 当
的值变化时,求
关于
的函数解析式;
(3)
设该函数的图象不经过第三象限,当-5
时,函数的最大值与最小值之差为16,求
的值.
综合题
普通
2. 已知函数y=-x
2
+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).
(1)
求b,c的值.
(2)
当﹣4≤x≤0时,求y的最大值.
(3)
当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.
综合题
普通
3. 已知二次函数
,其中
.
(1)
当
时,求二次函数顶点坐标;
(2)
当
时,记二次函数的最小值为
,求证:
;
(3)
当
时,且
满足
时,函数有最大值为3,求
的值.
综合题
困难