0
返回首页
1. 如图,在6×6的正方形网格中,每个小正方形的边长都为1,请在所给网格中按下列要求画出图形.
(1)
从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为
;
(2)
以(1)中的AB为边的一个等腰△ABC,使点C在格点上,且三边中至少有两边的长度都是无理数.回答:符合条件的点C共有
个,并在网格中画出符合条件的所有点C.
【考点】
勾股定理的应用;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
作图题
普通
能力提升
真题演练
换一批
1. 如图,在6×8的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.在图1中,画一个等腰三角形,使它的三边长都是无理数;在图2中,画一个等腰三角形,使它的三边长都是有理数.
作图题
普通
2. 如图,在正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点.请你在给出的5×5的正方形网格中,以格点为顶点,画出五个直角三角形,这五个直角三角形的斜边长分别为
,
,
,
,
(画出的这五个直角三角形除顶点和边可以重合外,其余部分不能重合).
作图题
普通
3. 在某一平地上,有一棵树高8米的大树,一棵树高3米的小树,两树之间相距12米。今一只小鸟在其中一棵树的树梢上,要飞到另一棵树的树梢上,问它飞行的最短距离是多少?(画出草图然后解答)
作图题
普通
1. 勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是
(结果用含m的式子表示).
填空题
普通
2. 我国古代数学名著(孙子算经)有估算方法:“方五,邪(通“斜”)七。见方求邪,七之,五而一。”译文为:如果正方形的边长为五,则它的对角线长为七.已知正方形的边长,求对角线长,则先将边长乘以七再除以五.若正方形的边长为1,由勾股定理得对角线长为
,依据《孙子算经》的方法,则它的对角线的长是
.
填空题
普通
3. 拓展小组研制的智能操作机器人,如图1,水平操作台为l,底座AB固定,高AB为50cm,连杆BC长度为70cm,手臂CD长度为60cm.点B,C是转动点,且AB,BC与CD始终在同一平面内,
(1)
转动连杆BC,手臂CD,使
,
,如图2,求手臂端点D离操作台
的高度DE的长(精确到1cm,参考数据:
,
).
(2)
物品在操作台
上,距离底座A端110cm的点M处,转动连杆BC,手臂CD,手臂端点D能否碰到点M?请说明理由.
综合题
普通