0
返回首页
1. 已知:如图,圆
O
是△
ABC
的外接圆,
AO
平分∠
BAC
.
(1)
求证:△
ABC
是等腰三角形;
(2)
当
OA
=4,
AB
=6,求边
BC
的长.
【考点】
全等三角形的判定与性质; 等腰三角形的判定与性质; 勾股定理; 垂径定理;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
换一批
1. 如图,在矩形
中,
,
为边
上一点,
,连接
.动点
从点
同时出发,点
以
的速度沿
向终点
运动;点
以
的速度沿折线
向终点
运动.设点
运动的时间为
,在运动过程中,点
,点
经过的路线与线段
围成的图形面积为
.
(1)
,
°;
(2)
求
关于
的函数解析式,并写出自变量
的取值范围;
(3)
当
时,直接写出
的值.
综合题
普通
2. 如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,Q为AB的中点.动点P从点A出发沿折线AC--CB以每秒2个单位长度的速度运动,连结PQ,以PQ为边构造正方形PMNQ且边MN与点B始终在边PQ同侧.设点P的运动时间为t秒(>0).
(1)
线段AB的长为
(2)
当点P在边AC上运动时,线段CP的长为
▲
(用含t的代数式表示) .
①当正方形PMNQ与△ABC重叠部分图形是正方形时,求t的取值范围.
②当边MN的中点落在△ABC的边上时,求正方形PMNQ的面积.
(3)
当点P不与点C重合时,作点C关于直线PQ的对称点C'当PC'⊥AB时,直接写出t的值.
综合题
普通
3. 如图,在四边形ABCD中,AB∥CD,∠ECF=∠BCD=90°,CE=CF=5,BC=7,BD平分∠ABC,E是△BCD内一点,F是四边形ABCD外一点.(E可以在△BCD的边上)
(1)
求证:DC=BC;
(2)
当∠BEC=135°,设BE=a,DE=b,求a与b满足的关系式;
(3)
当E落在线段BD上时,求DE的长.
综合题
普通