0
返回首页
1. 如图,正方形ABCD的边长为6,E、F分别是边CD、AD上动点,AE和BF交于点G.
(1)
如图(1),若E为边CD的中点,AF=2FD,求AG的长.
(2)
如图(2),若点F在AD上从A向D运动,点E在DC上从D向C运动,两点同时出发,同时到达各自终点,求在运动过程中,点G运动的路径长。
(3)
如图(3),若E、F分别是边CD、AD上的中点,BD与AE交于点H,求∠FBD的正切值。
【考点】
全等三角形的判定与性质; 勾股定理; 正方形的性质; 锐角三角函数的定义; 等腰直角三角形;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
困难
能力提升
换一批
1. 如图,四边形ABCD、BEFG均为正方形,连接AG、CE.
(1)
求证:AG=CE;
(2)
求证:AG⊥CE.
综合题
普通
2. 勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图;分别以Rt△ABC的三边为边长,向外作正方形ABDE、BCFG、ACHI.
(1)
设正方形ABDE的面积为
, 正方形BCFG的面积为
, 正方形ACHI的面积为
, 证明
;
(2)
连接BI、CE,求证:EC=BI;
(3)
过点B作AC的垂线,交AC于点M,交IH于点N.试说明四边形AMNI与正方形ABDE的面积相等.
综合题
普通
3. 如图,正方形ABCD和正方形AEFG有公共点A,点B在线段DG上.
(1)
判断DG与BE的位置关系,并说明理由:
(2)
若正方形ABCD的边长为2,正方形AEFG的边长为2
,求BE的长.
综合题
普通