1.

如图所示,抛物线y=ax2+ +c经过原点O和A(4,2),与x轴交于点C,点M、N同时从原点O出发,点M以2个单位/秒的速度沿y轴正方向运动,点N以1个单位/秒的速度沿x轴正方向运动,当其中一个点停止运动时,另一点也随之停止.

(1) 求抛物线的解析式和点C的坐标;

(2) 在点M、N运动过程中,

①若线段MN与OA交于点G,试判断MN与OA的位置关系,并说明理由;

②若线段MN与抛物线相交于点P,探索:是否存在某一时刻t,使得以O、P、A、C为顶点的四边形是等腰梯形?若存在,请求出t值;若不存在,请说明理由.

【考点】
待定系数法求一次函数解析式; 二次函数图象与坐标轴的交点问题; 等腰梯形的判定; 相似三角形的判定与性质; 二次函数的实际应用-几何问题;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难