1.
已知集合M是满足下列性制的函数f(x)的全体,存在实数a、k(k≠0),对于定义域内的任意x均有f(a+x)=kf(a﹣x)成立,称数对(a,k)为函数f(x)的“伴随数对”.
(1)
判断f(x)=x2是否属于集合M,并说明理由;
(2)
若函数f(x)=sinx∈M,求满足条件的函数f(x)的所有“伴随数对”;
(3)
若(1,1),(2,﹣1)都是函数f(x)的“伴随数对”,当1≤x<2时,f(x)=cos( x);当x=2时,f(x)=0,求当2014≤x≤2016时,函数y=f(x)的解析式和零点.