1. 如图1,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2),将纸片△AC1D1沿直线D2B(AB)方向平移(点A、D1、D2、B始终在同一直线上),当点D1与点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.

(1) 当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2) 设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,并求出函数y的最值.
【考点】
三角形的面积; 平移的性质; 相似三角形的判定与性质; 几何图形的面积计算-割补法;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 普通
能力提升
换一批