如图,在△ABC中,D是BC边上的点(不与点B、C重合),连结AD.
问题引入:
如图,在Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两点P,Q分别从点A和点C同时出发,沿边AB,CB向终点B移动.其中点P,Q的速度分别为2cm/s,1cm/s,且当其中一点到达终点时,另一点也随之停止移动.设P,Q两点移动时间为x s.
如图,点D双曲线上,AD垂直x轴,垂足为A,点C在AD上,CB平行于x轴交曲线于点B,直线AB与y轴交于点F,已知AC:AD=1:3,点C的坐标为(2,2).
①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.
②分别以点D、E为圆心,大于 的同样长为半径作弧,两弧交于点F.
③作射线BF交AC于点G.
如果 , , 的面积为18,则 的面积为.