等腰直角三角形勾股高三角形(填“是”或“不是”);
如图②,为勾股高三角形,其中为勾股顶点且 , 是边上的高.试探究线段与的数量关系,并给予证明.
如图③,等腰三角形为勾股高三角形,其中 , 为边上的高,过点向边引平行线与边交于点.若 , 试求线段的长度.
(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在中, , D、A、E三点都在直线l上,并且有 , 其中α为任意锐角或钝角.请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过的边、向外作等腰和等腰 , 是边上的高,延长交于点I,求证:I是的中点.