0
返回首页
1. 如图,在
中,
.
(1)
尺规作图:作
的角平分线交
于点
(不写做法,保留作图痕迹);
(2)
在(1)所作图形中,求
的面积.
【考点】
三角形的面积; 角平分线的性质; 勾股定理; 角平分线的概念;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
换一批
1. 如图,在每个小正方形的边长均为1的方格纸中有线段AB和CD,点A、B、C、D均在小正方形的顶点上.
(1)
画出一个以AB为一边的△ABE,点E在小正方形的顶点上,且∠BAE=45°,△ABE的面积为
;
(2)
画出以CD为一腰的等腰△CDF,点F在小正方形的顶点上,且△CDF的面积为
;
(3)
在(1)、(2)的条件下,连接EF,请直接写出线段EF的长.
综合题
普通
2. 如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,Q为AB的中点.动点P从点A出发沿折线AC--CB以每秒2个单位长度的速度运动,连结PQ,以PQ为边构造正方形PMNQ且边MN与点B始终在边PQ同侧.设点P的运动时间为t秒(>0).
(1)
线段AB的长为
(2)
当点P在边AC上运动时,线段CP的长为
▲
(用含t的代数式表示) .
①当正方形PMNQ与△ABC重叠部分图形是正方形时,求t的取值范围.
②当边MN的中点落在△ABC的边上时,求正方形PMNQ的面积.
(3)
当点P不与点C重合时,作点C关于直线PQ的对称点C'当PC'⊥AB时,直接写出t的值.
综合题
普通
3. 如图,在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过AC的中点E作FG∥AD,交BA的延长线于点F,交BC于点G。
(1)
求证:AE=AF;
(2)
若BC=
AB,AF=3,求BC的长。
综合题
普通