0
返回首页
1. 如图所示,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,0),B(5,0),C(1,4),将△ABC绕顶点A逆时针方向旋转一定角度后,点C恰好与直线y=-x-1上的点D重合,此时点B恰好与点E重合,则点E的坐标为( )
A.
(
-1,
+1)
B.
(
,
+1)
C.
(
-1,
+1)
D.
(
,
+1)
【考点】
勾股定理; 一次函数中的动态几何问题; 三角形全等的判定-AAS;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
单选题
困难
基础巩固
能力提升
变式训练
拓展培优
换一批
1. 如图所示,∆ABC的顶点在正方形网格的格点上,则cosB=( )
A.
B.
C.
D.
单选题
容易
2. 如图,大坝横截面的迎水坡AB的坡比为1:2,即BC:AC=1:2,若坡面AB的水平宽度AC为12米,则斜坡AB的长为( )
A.
4
米
B.
6
米
C.
6
米
D.
24米
单选题
容易
3. 如图,网格中的小正方形边长均为1,
的三个顶点均在格点上,则AC的长度为( )
A.
B.
C.
D.
25
单选题
容易
1. 勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.勾股定理描述:直角三角形两条直角边的平方和等于斜边的平方.如左图,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按右图的方式放置在最大正方形内.则图中阴影部分的面积为( )
A.
B.
C.
D.
单选题
普通
2. 如图是一个滑梯示意图,左边是楼梯,右边是滑道.已知滑道
与
的长度相等,滑梯的高度
,
, 则滑道
的长为( )
A.
B.
C.
D.
单选题
普通
3. 如图所示,在
中,
,
,
, 点P以
的速度从点A开始沿边
向点B移动,点Q以
的速度从点B开始沿边
向点C移动,且点P,Q分别从点A,B同时出发.若有一点到达目的地,则另一点同时停止运动.要使P,Q两点之间的距离等于
, 则需要经过( )
A.
B.
C.
D.
或
单选题
普通
1. 如图,我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,若小正方形和大正方形的面积分别为49和289,则图中直角三角形内切圆的半径为
.
填空题
普通
2. 如图,点M是函数
与
的图象在第一象限内的交点,OM=4,则k的值为
.
填空题
普通
3. 如图,在
中,
,
,
, 点P从点A出发沿
以
的速度向点B移动,点P出发几秒后,
?
解答题
容易
1. 如图1,在平面直角坐标系xOy中,点A的坐标是(0,2),点C是x轴上的一个动点.当点C在x轴上移动时,始终保持△ACP是等腰直角三角形(∠ACP=90°,点A、C、P按逆时针方向排列);当点C移动到点O时,得到等腰直角三角形AOB(此时点P与点B重合).
【初步探究】
(1)
写出点B的坐标
;
(2)
点C在x轴上移动过程中,作PD⊥x轴,垂足为点D,都有△AOC≌△CDP,请在图2中画出当等腰直角△ACP的顶点P在第四象限时的图形,并求证:△AOC≌△CDP.
(3)
【深入探究】当点C在x轴上移动时,点P也随之运动.探究点P在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;
(4)
直接写出AP
2
的最小值为
.
综合题
困难