1. 一段长为l、电阻率为ρ、横截面积为S的细金属直导线,单位体积内有n个自由电子,电子电荷量为e、质量为m。
(1) 当该导线通有恒定的电流I时,经典物理学认为,金属的电阻源于定向运动的自由电子与金属离子(即金属原子失去电子后的剩余部分)的碰撞,该碰撞过程将对电子的定向移动形成一定的阻碍作用,该作用可等效为施加在电子上的一个沿导线的平均阻力。若电子受到的平均阻力大小与电子定向移动的速率成正比,比例系数为k。请根据以上的描述构建物理模型,推导出比例系数k的表达式。
(2) 将上述导线弯成一个闭合圆线圈,若该不带电的圆线圈绕通过圆心且垂直于线圈平面的轴匀速率转动,线圈中不会有电流通过,若线圈转动的线速度大小发生变化,线圈中会有电流通过,这个现象首先由斯泰瓦和托尔曼在1917年发现,被称为斯泰瓦—托尔曼效应。这一现象可解释为:当线圈转动的线速度大小均匀变化时,由于惯性,自由电子与线圈中的金属离子间产生定向的相对运动。取线圈为参照物,金属离子相对静止,由于惯性影响,可认为线圈中的自由电子受到一个大小不变、方向始终沿线圈切线方向的力,该力的作用相当于非静电力的作用。

已知某次此线圈匀加速转动过程中,该切线方向的力的大小恒为F。根据上述模型回答下列问题:

①求一个电子沿线圈运动一圈,该切线方向的力F做功的大小;

②推导该圆线圈中的电流的表达式。

【考点】
电阻定律; 电流的微观表达式及其应用; 电源电动势及内阻; 欧姆定律的内容、表达式及简单应用;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
解答题 困难
能力提升
换一批
1. 对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。一段长为l、横截面积为S的细金属直导线,单位体积内有n个自由电子,电子电荷量为e、质量为m。

(1)该导线通有电流时,假设自由电子定向移动的速率恒为v。

① 求导线中的电流I;     

②为了更精细地描述电流的分布情况,引入了电流面密度j,电流面密度被定义为单位面积的电流强度,求电流面密度j的表达式;   

③经典物理学认为,金属的电阻源于定向运动的自由电子与金属离子(即金属原子失去电子后的剩余部分)的碰撞,该碰撞过程将对电子的定向移动形成一定的阻碍作用,该作用可等效为施加在电子上的一个沿导线的平均阻力。若电子受到的平均阻力大小与电子定向移动的速率成正比,比例系数为k。请根据以上描述构建物理模型,求出金属导体的电阻率ρ的微观表达式。

(2*)将上述导线弯成一个闭合圆线圈,若该不带电的圆线圈绕通过圆心且垂直于线圈平面的轴匀速率转动,线圈中不会有电流通过,若线圈转动的线速度大小发生变化,线圈中会有电流通过,这个现象首先由斯泰瓦和托尔曼在1917年发现,被称为斯泰瓦—托尔曼效应。这一现象可解释为:当线圈转动的线速度大小均匀变化时,由于惯性,自由电子与线圈中的金属离子间产生定向的相对运动,从而形成电流。若此线圈在匀速转动的过程中突然停止转动,由于电子在导线中运动会受到沿导线的平均阻力,所以只会形成短暂的电流。已知电子受到的沿导线的平均阻力满足(1)问中的规律,求此线圈以由角速度ω匀速转动突然停止转动(减速时间可忽略不计)之后,通过线圈导线横截面的电荷量Q。

解答题 困难