0
返回首页
1. 如图,
AB
是⊙
O
的直径,
P
为
AB
上一点(点
P
不与
A
、
B
重合),
CD
与
EE
是过点
P
的两条弦,且
CD
=
EF
,
CD
⊥
EF
.
(1)
求证:
PB
平分∠
FPD
;
(2)
若
PE
=3,
PF
=5,求
AB
的长;
(3)
求证:当点
P
在
AB
上运动时,
的值不变,并求出这个定值.
【考点】
垂径定理; 等腰直角三角形; 角平分线的判定;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
证明题
困难
能力提升
换一批
1. 已知:如图,OA=OB,AB交⊙O于点C,D.
求证:AC=BD.
证明题
普通
2. 已知:如图,在⊙O中,弦EF∥CD,直径AB分别交弦CD,EF于点M,N,且A是
的中点.
求证:M是弦CD的中点.
证明题
普通
3. 如图,
AB
是⊙
O
的弦,
C
、
D
是直线
AB
上的两点,并且
AC
=
BD
, 求证:
OC
=
OD
.
证明题
普通