0
返回首页
1. 设函数
.
(1)
若
, 求
的值.
(2)
若
, 且
在区间
上为增函数,求
的最大值.
(3)
已知
在区间
上单调递增,
, 再从条件①、条件②这两个条件中选择一个作为已知,求
的值.条件①:
在区间
上单调递减;条件②:
.
注:如果选择多个符合要求的条件分别解答,按第一个解答计分.
【考点】
两角和与差的正弦公式; 正弦函数的性质; 函数y=Asin(ωx+φ)的图象与性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
换一批
1. 已知函数
.
(1)
求函数
的单调递增区间;
(2)
若函数
的图像关于点
中心对称,求
在
上的值域.
解答题
普通
2. 已知
.
(1)
求
的最小正周期和单调递增区间;
(2)
当
时,若
, 求x的取值范围.
解答题
普通
3. 已知函数
.
(1)
求
的值;
(2)
求
的最小正周期;
(3)
求
在区间
上的最大值和最小值.
解答题
普通