1. 甲进行摸球跳格游戏.图上标有第1格,第2格, , 第25格,棋子开始在第1格.盒中有5个大小相同的小球,其中3个红球,2个白球(5个球除颜色外其他都相同).每次甲在盒中随机摸出两球,记下颜色后放回盒中,若两球颜色相同,棋子向前跳1格;若两球颜色不同,棋子向前跳2格,直到棋子跳到第24格或第25格时,游戏结束.记棋子跳到第格的概率为.
(1) 甲在一次摸球中摸出红球的个数记为 , 求的分布列和期望;
(2) 证明:数列为等比数列,并求的通项公式.
【考点】
等差数列与等比数列的综合; 离散型随机变量及其分布列; 离散型随机变量的期望与方差;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
解答题 困难