1. 为研究除草剂草甘膦在环境中残留的危害,科研人员将生长良好、生理状况一致的成年蟾蜍均分为若干组,每天定时将等量不同浓度的草甘膦溶液或蒸馏水喷洒对应组蟾蜍体表,分别取不同喷洒天数的蟾蜍制备坐骨神经一腓肠肌标本(图1),测定并记录蟾蜍坐骨神经上神经冲动传导速度,得到图2所示结果。回答下列问题:

   

(1) 坐骨神经—腓肠肌标本可看作反射弧结构中的,该实验中制备好的标本需置于任氏液(两栖动物的生理盐水)中,任氏液的作用是
(2) 上述实验的自变量有,根据图2实验结果分析,随着草甘膦溶液浓度的升高,蟾蜍坐骨神经的神经冲动传导速度,能否判断“草甘膦处理时间越长,蟾蜍坐骨神经的神经冲动传导速度越慢”?(能/不能)。
(3) 实验中还发现,随着草甘膦溶液浓度的升高,蟾蜍神经动作电位峰值逐渐降低,推测草甘膦很可能抑制细胞膜上的功能,使Na+内流减少,从而导致动作电位峰值降低。
【考点】
反射弧各部分组成及功能; 神经冲动的产生和传导;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
实验探究题 困难
能力提升
真题演练
换一批
1.  研究发现,当胃肠道遭受毒素入侵后,分布在肠嗜铬细胞膜上的Ca2+通道被激活,并释放大量5-羟色胺(5-HT),其周围的迷走神经感觉末梢能接收5-HT并将信号传送到脑干孤束核,脑干孤束核内的神经元一方面激活“厌恶中枢”,产生与“恶心”相关的厌恶性情绪;另一方面激活脑干的呼吸中枢,通过调节负责膈肌和腹肌同时收缩的神经元,引发呕吐行为。我国科学家首次详细绘制出了小鼠从肠道到大脑的防御反应神经通路,具体过程如图所示。

  

(1) 迷走神经感觉末梢的特异性受体与5-HT结合后,产生兴奋,引发膜电位发生变化的机制是
(2) 食源性细菌被机体摄入后,会在宿主体内产生毒素,刺激机体的“厌恶中枢”,在产生与“恶心”相关的厌恶性情绪,引发的呕吐行为可将摄入的有毒食物排出消化道。结合上述信息可知,由变质食物引发呕吐的反射弧中,效应器是
(3) 研究发现,脑干孤束核中有多种神经元,其中只有表达速激肽基因的神经元(M)能接收到迷走神经传来的信息,并通过释放速激肽来传导信息。已知化学遗传学技术可特异性抑制M神经元,现以正常小鼠为实验材料验证该问题,请完善实验思路:选取生理状态相同的健康小鼠均分为甲、乙两组,甲组的处理是:,乙组作为对照组;用毒素刺激(填“甲”或“乙”“甲、乙”)组小鼠,观察小鼠的呕吐行为。
(4) 临床研究发现,化疗药物会激活癌症患者与上述相同的神经通路。科研人员研发出针对化疗患者的抗恶心药物,结合问题(3)的信息,试分析其可能的作用机制。(答出2点即可)
实验探究题 普通
2. 疼痛的发生与神经递质-N-甲基-d天门冬氨酸(NMDA)受体的活化有关。NMDA受体是一种通道型受体,当NMDA受体被激活,Ca2+离子内流进而引发Na+内流,使突触后神经元兴奋。研究发现氯胺酮具有一定的止痛和抗抑郁作用。回答下列问题:
(1) NMDA储存在中,NMDA释放并作用于受体后会使突触后膜电位变为。NMDA发挥作用后会与受体分开,并迅速以免持续发挥作用。
(2) 推测氯胺酮止痛和抗抑郁的机制可能是
(3) 科研人员设计并进行了氯胺酮对抑郁症小鼠社交障碍影响的实验。请补充完善以下实验。

①实验过程:

a、构建抑郁症模型小鼠,小鼠表现出明显的社交回避行为;

b、取一定数量正常小鼠随机平均分为两组,一组注射适量的生理盐水,一组注射等量的5mL/kg氯胺酮;取一定数量的模型鼠随机平均分为四组,一组注射,另三组分别注射等量的5mL/kg、10mL/kg、15mL/kg的氯胺酮;

c、社交实验(具体操作不做要求);

d、实验结束后,根据记录的实验数据计算小鼠的社交偏好率,实验结果如下图所示。

②分析和讨论:

实验可初步得出结论:;5mg/kg氯胺酮处理正常小鼠组的数据产生的原因可能是正常小鼠对氯胺酮的敏感性(填“高于”、“低于”或“等于”)模型小鼠。

(4) 若已证明氯胺酮可以改善小鼠抑郁症,能否直接投入生产应用于治疗人类抑郁症?说明理由
实验探究题 普通
3.

有研究表明,温度显著影响牛蛙神经的动作电位幅度和传导速度,而糖皮质激素阻断牛蛙神经的突触传递且一定范围内糖皮质激素浓度越高,阻断效果越强,阿托品可以增强高浓度糖皮质激素的阻断效果。为了验证以上观点,兴趣小组的同学进行了如下实验。

(一)温度实验

(1)实验步骤:

①将牛蛙随机分为5、15、25、30、33、35、39℃七个实验温度,分别放在预先设定好温度的生化培养箱内驯化48h。

②分别取出牛蛙坐骨神经,连接刺激电极和记录电极。

③分别向各组坐骨神经施加适宜且相同强度的电刺激,检测________。

④对实验数据进行处理分析。

实验结果:5~30℃温度范围内,动作电位幅度随温度升高而增大,30℃后显著下降。25~33℃动作电位的传导速度相对较高,低于25℃或高于33℃,其传导速度均呈现显著的下降趋势。

(2)分析与讨论:动作电位幅度的大小与细胞膜两侧Na+浓度有关,推测高温环境下(超过33℃),细胞外液的Na+浓度下降,使得神经细胞受到有效刺激时,Na+内流量________,致使动作电位的幅度降低。动作电位以________的形式进行传导,其传导速度取决于细胞膜结构和功能的完整性,因此推测高温环境下(超过33℃)传导速度下降可能与________有关,低温环境下(低于25℃)传导速度下降可能与细胞代谢水平________有关。

(二)糖皮质激素实验

(3)实验材料:牛蛙椎旁交感神经链、任氏液、皮质醇(属于糖皮质激素,用任氏液分别配成0.01、0.1和1μmol/L)、适宜浓度的阿托品、灌流小室、电极、计算机等。

实验分组:

A组:________。

B组:等量0.01μmol/L皮质醇。

C组:等量0.1μmol/L皮质醇。

D组:等量lμmol/L皮质醇。

E组:________。

用以上各组材料分别处理对应组别的牛蛙神经标本,对突触前神经(节前神经纤维)采用适宜电刺激,检测并记录突触后电位,统计突触传递的阻断率(100%成功记录突触后电位次数/总刺激次数)。

(4)预测实验结果:请用柱形图表示预期的实验结果________。
(5)为研究阿托品的作用机制,兴趣小组将生理功能完好的神经—肌肉标本置于任氏液中,滴加阿托品后刺激神经,肌肉收缩减弱甚至不能收缩:再滴加乙酰胆碱酯酶抑制剂后,阿托品的麻醉作用降低甚至解除。据此判断,阿托品抑制突触处的兴奋传递的机制最可能是___。
A. 破坏突触后膜上的神经递质受体
B. 阻止突触前膜释放神经递质
C. 竞争性地和乙酰胆碱的受体结合
D. 阻断突触后膜上的K+通道
实验探究题 普通