问题情境:如图1,四边形ABCD是菱形,过点作于点 , 过点作于点 .
①如图2,当线段AH经过点时,GH所在直线分别与线段AD,CD交于点M,N.猜想线段CH与MD的数量关系,并说明理由;
②当直线GH与直线CD垂直时,直线GH分别与直线AD,CD交于点M,N,直线AH与线段CD交于点 . 若 , 直接写出四边形AMNQ的面积.
【提出问题】
已知:菱形ABCD的变长为4,∠ADC=60°,△PEF为等边三角形,当点P与点D重合,点E在对角线AC上时(如图1所示),求AE+AF的值;
【类比探究】
在上面的问题中,如果把点P沿DA方向移动,使PD=1,其余条件不变(如图2),你能发现AE+AF的值是多少?请直接写出你的结论;
【拓展迁移】
在原问题中,当点P在线段DA的延长线上,点E在CA的延长线上时(如图3),设AP=m,则线段AE、AF的长与m有怎样的数量关系?请说明理由.
【感知】如图①,△ABC是等边三角形,点D、E分别在AB、BC边上,且AD=BE,易知:△ADC≌△BEA.
【探究】如图②,△ABC是等边三角形,点D、E分别在边BA、CB的延长线上,且AD=BE,△ADC与△BEA还全等吗?如果全等,请证明:如果不全等,请说明理由.
【拓展】如图③,在△ABC中,AB=AC,∠1=∠2,点D、E分别在BA、FB的延长线上,且AD=BE,若AF= CF=2BE,S△ABF=6,求S△BCD的大小.