0
返回首页
1. 如图,《九章算术》中记载“今有竹高一丈,末折抵地, 去本三尺.问: 折者高几何?”译文: 一根竹子, 原高一丈, 虫伤有病, 一阵风将竹子折断, 其竹梢恰好着地, 着地处离原竹子根部 3 尺远. 问: 原处还有多高的竹子 (1 丈
10 尺)? 答: 原处的竹子还有尺高( )
A.
B.
C.
D.
【考点】
勾股定理的应用;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
单选题
普通
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合右图,其大意是:今有圆形材质,直径
为25寸,要做成方形板材,使其厚度
达到7寸.则
的长是( )
A.
寸
B.
25寸
C.
24寸
D.
7寸
单选题
容易
2. 我国古代数学著作《九章算术》记载了一道有趣的问题,原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设水深为x尺,根据题意,可列方程为( )
A.
B.
C.
D.
单选题
容易
3. 《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )
A.
3
B.
5
C.
4.2
D.
4
单选题
容易
1. 《九章算术》中有一题:“今有二人同所立,甲行率七,乙行率三,乙东行,甲南行十而斜东北与乙会.问甲、乙行各几何?”大意是说:已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3.乙一直向东走,甲先向南走10,后又向东北方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多少?设甲、乙二人从出发到相遇的时间为x,根据题意,可列方程正确的是( )
A.
B.
C.
D.
单选题
普通
2. 如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )
A.
12米
B.
13米
C.
14米
D.
15米
单选题
普通
3. 设一个直角三角形的两直角边分别是
a
,
b
, 斜边是
c
. 若用一把最大刻度是20cm的直尺,可一次直接测得
c
的长度,则
a
,
b
的长可能是( )
A.
a
=12,
b
=16
B.
a
=11,
b
=17
C.
a
=10,
b
=18
D.
a
=9,
b
=19
单选题
普通
1. 勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是
(结果用含m的式子表示).
填空题
普通
2. 我国古代数学名著(孙子算经)有估算方法:“方五,邪(通“斜”)七。见方求邪,七之,五而一。”译文为:如果正方形的边长为五,则它的对角线长为七.已知正方形的边长,求对角线长,则先将边长乘以七再除以五.若正方形的边长为1,由勾股定理得对角线长为
,依据《孙子算经》的方法,则它的对角线的长是
.
填空题
普通
3. 如图,所有阴影部分的四边形都是正方形,所有三角形都是直角三角形,若正方形
的面积依次为5、13、30,则正方形
的面积为
.
填空题
普通
1. 如图①,在
中,
,
是
边上的中线,
是
的中点,过点
作
的平行线交
的延长线于点
, 连接
.
图1 图2
(1)
求证:四边形
是菱形.
(2)
如图②,连接
, 若
,
, 求
的长.
解答题
普通
2. 如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为
海里.
(1)
求观测点B与C点之间的距离;
(2)
有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.
综合题
普通
3. 如图,水平放置的圆柱形排水管的截面半径为
, 截面中有水部分弓形的高为
.
(1)
求截面中弦
的长;
(2)
求截面中有水部分弓形的面积.
解答题
普通
1. 如图,码头A,B分别在海岛O的北偏东45°和北偏东60°方向上,仓库C在海岛O的北偏东75°方向上,码头A,B均在仓库C的正西方向,码头B和仓库C的距离BC=50km,若将一批物资从仓库C用汽车运送到A、B两个码头中的一处,再用货船运送到海岛O,若汽车的行驶速度为50km/h,货船航行的速度为25km/h,问这批物资在哪个码头装船,最早运抵海岛O?(两个码头物资装船所用的时间相同,参考数据:
≈1.4,
≈1.7)
解答题
普通
2. 勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是
(结果用含m的式子表示).
填空题
普通
3. 我国古代数学名著(孙子算经)有估算方法:“方五,邪(通“斜”)七。见方求邪,七之,五而一。”译文为:如果正方形的边长为五,则它的对角线长为七.已知正方形的边长,求对角线长,则先将边长乘以七再除以五.若正方形的边长为1,由勾股定理得对角线长为
,依据《孙子算经》的方法,则它的对角线的长是
.
填空题
普通