0
返回首页
1. 如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如图所示就是一组正多边形.
(1)
观察每个正多边形中的
, 填写下表:
正多边形边数
的度数
▲
▲
▲
▲
(2)
是否存在正
边形使得
?若存在,请求出
的值;若不存在,请说明理由.
【考点】
三角形内角和定理; 等腰三角形的性质; 多边形内角与外角; 探索图形规律; 正多边形的性质; 用代数式表示图形变化规律;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
换一批
1. 在△ABC中,AD⊥BC于D,AE平分∠BAC.
(1)若∠ACD=70°,∠ABD=40°,求∠EAD;
(2)∠ACD=α,∠ABD=β,∠AED为
.
解答题
普通
2. 已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为多少?
解答题
普通
3. 如图,已知在等腰△
ABC
中,
AB
=
AC
, ∠
BAC
=80°,
AD
⊥
BC
,
AD
=
AB
, 连接
BD
并延长,交
AC
的延长线于点
E
, 求∠
E
的度数.
解答题
普通