1.
中国古代的数理天文学通常都是以分数的形式选择历法中用到的天文学常数.由于这些天文学常数基本上都是无理数,因此,历法家们设计了一些算法用来挑选合适的有理数去逼近这些常数,这样的方法在数学上被称作“实数的有理逼近”.我国南北朝时期数学家何承天发明的“调日法”便是利用分数的加成性质而设计的一种实数的有理逼近算法,其步骤大体如下:设实数x的不足近似值和过剩近似值分别为
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmtext%3Eb%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3Ea%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
和
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmtext%3Ed%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3Ec%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
(即有
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmtext%3Eb%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3Ea%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
<x<
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmtext%3Ed%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3Ec%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
, 其中a,b,c,d为正整数),则
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmtext%3Eb%3C%2Fmtext%3E%3Cmtext%3E%2B%3C%2Fmtext%3E%3Cmtext%3Ed%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3Ea%3C%2Fmtext%3E%3Cmtext%3E%2B%3C%2Fmtext%3E%3Cmtext%3Ec%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
是x的更为精确的近似值.例如:已知
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmn%3E7%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmtext%3E%EF%BC%9C%3C%2Fmtext%3E%3Cmtext%3E%CF%80%3C%2Fmtext%3E%3Cmtext%3E%EF%BC%9C%3C%2Fmtext%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E7%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
, 则利用一次“调日法”后可得到π的一个更为精确的近似分数为
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmn%3E7%3C%2Fmn%3E%3Cmtext%3E%2B%3C%2Fmtext%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmtext%3E%2B%3C%2Fmtext%3E%3Cmn%3E7%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmtext%3E%3D%3C%2Fmtext%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E7%3C%2Fmn%3E%3Cmn%3E9%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmn%3E7%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
;由于
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E7%3C%2Fmn%3E%3Cmn%3E9%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmn%3E7%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
≈3.1404<π,再由
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E7%3C%2Fmn%3E%3Cmn%3E9%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmn%3E7%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%EF%BC%9C%3C%2Fmtext%3E%3Cmtext%3E%CF%80%3C%2Fmtext%3E%3Cmtext%3E%EF%BC%9C%3C%2Fmtext%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E7%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
, 可以再次使用“调日法”得到π的更为精确的近似分数
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E6%3C%2Fmn%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
.