0
返回首页
1. 记
为数列
的前n项和,已知
是公差为
,的等差数列.
(1)
求
的通项公式;
(2)
证明:
【考点】
数列的概念及简单表示法; 等差数列的通项公式; 数列的求和; 数列的递推公式; 数列与不等式的综合;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
换一批
1. 已知数列
是等差数列,
, 记
为数列
的前
项和,且
(1)
求数列
的通项公式;
(2)
若
, 求
,
.
解答题
普通
2. 已知数列
的各项均不为零,
为其前
n
项和,且
.
(1)
证明:
;
(2)
若
, 数列
为等比数列,
,
.求数列
的前2022项和
.
解答题
普通
3. 在数学中,把只能被自己和1整除的大于1自然数叫做素数(质数).历史上研究素数在自然数中分布规律的公式有“费马数”
;还有“欧拉质数多项式”:
.但经后人研究,这两个公式也有局限性.现有一项利用素数的数据加密技术—DZB数据加密协议:将一个既约分数的分子分母分别乘以同一个素数,比如分数
的分子分母分别乘以同一个素数19,就会得到加密数据
.这个过程叫加密,逆过程叫解密.
(1)
数列
中
经DZB数据加密协议加密后依次变为
.求经解密还原的数据
的数值;
(2)
依据
的数值写出数列
的通项公式(不用严格证明但要检验符合).并求数列
前
项的和
;
(3)
为研究“欧拉质数多项式”的性质,构造函数
是方程
的两个根
是
的导数.设
.证明:对任意的正整数
, 都有
.(本小题数列
不同于第(1)(2)小题)
解答题
普通