0
返回首页
1. 《中华人民共和国未成年人保护法》是为保护未成年人身心健康,保障未成年人合法权益.根据宪法制定的法律,某中学为宣传未成年人保护法,特举行一次未成年人保护法知识竞赛、竞赛规则是:两人一组,每一轮竞赛中,小组两人分别选答两题,若答对题数合计不少于3题,则称这个小组为“优秀小组”.已知甲乙两位同学组成一组,且甲、乙同学答对每道题的概率分别为
,
.
(1)
若
,
, 则在第一轮竞赛中,求他们获“优秀小组”的概率;
(2)
当
, 且每轮比赛互不影响,如果甲乙同学在此次竞赛活动中获得“优秀小组”的次数为6次,请问至少要进行多少轮竞赛.
【考点】
相互独立事件的概率乘法公式;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
困难
能力提升
真题演练
换一批
1. 乒乓球被称为中国的“国球”,是一种世界流行的球类体育项目.已知某次乒乓球比赛单局赛制为:每两球交换发球权,每赢1球得1分,先得11分者获胜.当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜.若单局比赛中,甲发球时获胜的概率为
, 甲接球时获胜的概率为
.
(1)
当某局打成10∶10平后,甲先发球,求“两人又打了4个球且获胜”的概率;
(2)
在单局比赛中,假如甲先发球,求甲最终11∶2获胜的概率.
解答题
普通
2. 某单位规定每位员工每年至少参加两项专业技能测试,测试通过可获得相应学分,每年得的总学分不低于10分,该年度考核为合格.该单位员工甲今年可参加的专业技能测试有
A
、
B
、
C
、
D
四项,已知这四项专业技能测试的学分及员工甲通过各项专业技能测试的概率如下表所示,且员工甲各项专业技能测试是否通过相互独立.
培训项目
A
B
C
D
学分
5分
6分
4分
8分
员工甲通过测试的概率
(1)
若员工甲参加
A
、
B
、
C
三项测试,求他本年度考核合格的概率:
(2)
员工甲欲从
A
、
B
,
C
、
D
中选择三项参加测试,若要使他本年度考核合格的概率不低于
,应如何选择?请求出所有满足条件的方案.
解答题
普通
3. 11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)
求P(X=2);
(2)
求事件“X=4且甲获胜”的概率.
解答题
普通
1. 甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.
(1)
求甲学校获得冠军的概率;
(2)
用X表示乙学校的总得分,求X的分布列与期望.
解答题
容易
2. 某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为
,且
.记该棋手连胜两盘的概率为p,则( )
A.
p与该棋手和甲、乙、丙的此赛次序无关
B.
该棋手在第二盘与甲比赛,p最大
C.
该棋手在第二盘与乙比赛,p最大
D.
该棋手在第二盘与丙比赛,p最大
单选题
普通
3. 甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为
和
,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为
,3次活动中,甲至少获胜2次的概率为
.
填空题
普通