0
返回首页
1. 已知正方形
,
,
为平面内两点.
(1)
(探究建模)
如图1,当点
在边
上时,
,且
,
,
三点共线.求证:
;
(2)
(类比应用)
如图2,当点
在正方形
外部时,
,
,且
,
,
三点共线.猜想并证明线段
,
,
之间的数量关系;
(3)
(拓展迁移)
如图3,当点
在正方形
外部时,
,
,
,且
,
,
三点共线,
与
交于
点.若
,
,求
的长.
【考点】
勾股定理; 正方形的性质; 等腰直角三角形; 三角形全等的判定-ASA; 三角形全等的判定-AAS;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
困难
能力提升
换一批
1. 如图,四边形
内接于
,
为
的直径,
.
(1)
试判断
的形状,并给出证明;
(2)
若
,
,求
的长度.
综合题
普通
2. 勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图;分别以Rt△ABC的三边为边长,向外作正方形ABDE、BCFG、ACHI.
(1)
设正方形ABDE的面积为
, 正方形BCFG的面积为
, 正方形ACHI的面积为
, 证明
;
(2)
连接BI、CE,求证:EC=BI;
(3)
过点B作AC的垂线,交AC于点M,交IH于点N.试说明四边形AMNI与正方形ABDE的面积相等.
综合题
普通
3. 在正方形
中,点E在
上、点F在
的延长线上,
, 连接
.
(1)
如图1,求证:∠F=45°;
(2)
如图2,设
,
交于点M,延长
交
的延长线于点N,在不添加任何辅助线的情况下,直接写出图中所有的等腰直角三角形.
综合题
普通