1. 定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点 是函数 的图象的“等值点”.
(1) 分别判断函数 的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;
(2) 设函数 的图象的“等值点”分别为点A,B,过点B作 轴,垂足为C.当 的面积为3时,求b的值;
(3) 若函数 的图象记为 ,将其沿直线 翻折后的图象记为 .当 两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.
【考点】
一次函数的图象; 反比例函数的图象; 二次函数图象的几何变换; 二次函数图象上点的坐标特征; 二次函数y=ax²+bx+c的性质;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难