1. 为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到如下图表:

该地区每周接种疫苗人数统计表

周次

第1周

第2周

第3周

第4周

第5周

第6周

第7周

第8周

接种人数(万人)

7

10

12

18

25

29

37

42

该地区全民接种疫苗情况扇形统计图

A:建议接种疫苗已接种人群

B:建议接种疫苗尚未接种人群

C:暂不建议接种疫苗人群

根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点 作一条直线(如图所示,该直线的函数表达式为 ),那么这条直线可近似反映该地区接种人数的变化趋势.

请根据以上信息,解答下列问题:

(1) 这八周中每周接种人数的平均数为万人:该地区的总人口约为万人;
(2) 若从第9周开始,每周的接种人数仍符合上述变化趋势.

①估计第9周的接种人数约为  ▲  万人;

②专家表示:疫苗接种率至少达60%,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?

(3) 实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少 万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果 ,那么该地区的建议接种人群最早将于第几周全部完成接种?
【考点】
一元一次不等式的应用; 一次函数的实际应用; 用样本估计总体; 平均数及其计算;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难
能力提升
换一批