0
返回首页
1. 在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为
=2
cosθ.
(1)
将C的极坐标方程化为直角坐标方程;
(2)
设点A的直角坐标为(1,0),M为C上的动点,点P满足
=
,写出 P的轨迹C
1
的参数方程,并判断C与C
1
是否有公共点.
【考点】
圆的标准方程; 圆与圆的位置关系及其判定; 点的极坐标和直角坐标的互化; 圆的参数方程;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
换一批
1. 已知圆O:x
2
+y
2
=4和圆C:x
2
+(y﹣4)
2
=1.
(Ⅰ)判断圆O和圆C的位置关系;
(Ⅱ)过圆C的圆心C作圆O的切线l,求切线l的方程;
解答题
普通