0
返回首页
1. 记S
n
为等比数列{a
n
}的前n项和.已知S
2
=2,S
3
=﹣6.
(1)
求{a
n
}的通项公式;
(2)
求S
n
, 并判断S
n
+
1
, S
n
, S
n
+
2
是否能成等差数列.
【考点】
等比数列的通项公式; 等比数列的前n项和; 数列的求和; 等差数列的性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
换一批
1. 已知数列
的前n项和为
.
(1)
求
的通项公式;
(2)
设
, 求数列
的前
项的和.
解答题
普通
2. 已知数列
是首项为2的等比数列,且
是
和
的等差中项.
(1)
求
的通项公式;
(2)
若数列
的公比
, 设数列
满足
, 求
的前2023项和
.
解答题
普通
3. 设数列
的前
项和为
, 已知
.
(1)
证明:
为等比数列,求出
的通项公式;
(2)
若
, 求
的前
项和
.
解答题
普通