1.
对于平面直角坐标系中的任意两点P1(x1 , y1),P2(x2 , y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的直角距离,记作d(P1 , P2).
(1)
已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;
(2)
设P0(x0 , y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0 , Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.