0
返回首页
1. 如图,点
和点
在数轴上,点
在原点
的左侧,点
在原点
的右侧,点
表示的数是6,用
表示点
与点
之间的距离,用
表示点
与点
之间的距离,用
表示点
和点
之间的距离,且
.动点
从点
出发以每秒4个单位长度的速度沿数轴负方向运动,同时动点
从原点
出发以每秒1个单位长度的速度沿数轴负方向运动;当动点
到达点
时,
,
两点同时停止运动.设点
的运动时间为秒,用
表示点
与点
之间的距离,用
表示点
与点
之间的距离.
(1)
当点
在点
的右侧且
时,
.
(2)
当点
在点
的左侧且
时,
.
【考点】
一元一次方程的实际应用-行程问题; 数轴的折线(双动点)模型;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
填空题
普通
能力提升
换一批
1. 某超市一楼和二楼之间架设了两台长度相同的上下自动扶梯,向上每秒移动的距离和向下每秒移动的距离相等,小可踏入上楼的扶梯并且以每秒0.3米的速度向上行走,同时,小逸踏入下楼的扶梯并且以每秒0.2米的速度向下行走.过了27秒,小可刚好位于扶梯的中点,又过了3秒,她和小逸相遇,自动扶梯的长度是
.
填空题
普通
2. 两车在两城间不断往返行驶,甲车从 A 城开出,乙车从 B 城出发,速度为80 km/h,且比甲车早出发1h,两车在点 C相遇.相遇后,乙车改为按甲车速度行驶,而甲车却提速20 km/h,两车恰巧又在点C相遇.相遇后,甲车再提速5k m/h,乙车也提速50 km/h,两车恰巧又在点C相遇,则两城相距
km.
填空题
困难
3. 小松、小菊比赛登楼梯.他们从一幢高楼的地面(一楼)出发,到达28楼后立即返回地面.当小松到达4楼时,小菊刚到达3楼.若他们保持固定的速度,则在小松到达28楼后返回地面途中,将与小菊在
楼相遇.(注:一楼与二楼之间的楼梯,均属于一楼,以下类推)
填空题
困难